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Περίληψη


Επεχειρούμε μια γενίκευση του Λήμματος του Fejér, βλέπε [2,4], και αποδεικνύουμε ως πόρισμα το κλασσικό Λήμμα των Riemann-Lebesgue. Επίσης δίνουμε μερικές ενδιαφέρουσες εφαρμογές. Τέλος εξετάζουμε την ισχύ του αντιστρόφου τουΛήμματος των Riemann-Lebesgue .
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Εισαγωγή
Έστω η συνάρτηση 
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 είναι Riemann ολοκληρώσιμη σε κάθε κλειστό και φραγμένο διάστημα του 
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 και το γενικευμένο ολοκλήρωμα 
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 υπάρχει. Χρησιμοποιώντας τη θεωρία ολοκλήρωσης Riemann, παραπέμπουμε στο [5, Chapter 3, Pt II, Problem 118], μπορεί εύκολα να αποδειχθεί ότι 
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Επειδή η 
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, η (1) είναι άμεση συνέπεια του λήμματος των Riemann-Lebesgue. Η (2) είναι ειδική περίπτωση ενός πιο γενικού αποτελέσματος γνωστού και σαν λήμμα του Fejér [2,4]. Στην επόμενη παράγραφο θα διατυπώσουμε και θα αποδείξουμε αυτά τα κλασσικά αποτελέσματα της Αρμονικής Ανάλυσης. Μάλιστα, θα αποδείξουμε ότι το λήμμα των Riemann-Lebesgue είναι ένα πόρισμα του λήμματος Fejér.
Για τη συνέχεια χρειαζόμαστε μερικούς ορισμούς και συμβολισμούς. Έστω 
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 είναι ο μοναδιαίος κύκλος στο μιγαδικό επίπεδο, δηλαδή 
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Αντίστροφα, αν η 
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 είναι περιοδική, με περίοδο 
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. Επομένως, μπορούμε να ταυτίσουμε συναρτήσεις που ορίζονται στον 
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, είναι η κλάση όλων των μιγαδικών, Lebesgue μετρήσιμων, 
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Επίσης γράφουμε 
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δηλαδή το 
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 είναι μέτρο Lebesgue στον 
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 που διαιρείται με 
[image: image32.wmf]2

p

. Το 
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 είναι ο χώρος όλων των συνεχών συναρτήσεων 
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Ορισμός 1 Αν 
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είναι ο 
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-οστός συντελεστής Fourier της 
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. Η εκθετική (ή μιγαδική) μορφή της σειράς Fourier της 
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 είναι η σειρά
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και τα μερικά αθροίσματά της είναι τα
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Η τριγωνομετρική μορφή της σειράς Fourier της 
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 είναι η σειρά
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Ως γνωστόν, αν 
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Επομένως,
αν η 
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Συμβολισμός. Αν 
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εκφράζουμε τη σχέση που συνδέει τη συνάρτηση 
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 με τη σειρά Fourier της 
[image: image63.wmf]f

.Χρησιμοποιείται αυτός ο συμβολισμός για συντομία αντί να γράφουμε τις εξισώσεις
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Ένα τριγωνομετρικό πολυώνυμο είναι ένα πεπερασμένο άθροισμα της μορφής
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 είναι μιγαδικοί αριθμοί. Ένα τριγωνομετρικό πολυώνυμο γράφεται και στην μορφή 
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Τα τριγωνομετρικά πολυώνυμα είναι 
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-περιοδικές συναρτήσεις.
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Απόδειξη του Λήμματος Fejér-Εφαρμογές
Θεώρημα 1 (Λήμμα του Fejér) Υποθέτουμε ότι η συνάρτηση 
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) είναι Lebesgue μετρήσιμη, φραγμένη και περιοδική με περίοδο 
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 είναι ένα διάστημα του 
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Απόδειξη. Μπορούμε να υποθέσουμε ότι 
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Η 
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 είναι Lebesgue μετρήσιμη, φραγμένη, περιοδική με περίοδο 
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Αν αποδείξουμε ότι 
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 προκύπτει η απόδειξη της (4).
Υποθέτουμε λοιπόν ότι 
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Επομένως, για κάθε 
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δηλαδή η 
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 είναι ομοιόμορφα φραγμένη στο 
[image: image109.wmf]R

. Αν 
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 είναι ένα οποιοδήποτε φραγμένο διάστημα, έστω 
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Επομένως 
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και κατά συνέπεια 
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Αν 
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 είναι μία κλιμακωτή συνάρτηση, δηλαδή γραμμικός συνδυασμός χαρακτηριστικών συναρτήσεων φραγμένων διαστημάτων, τότε 
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Έστω τώρα η συνάρτηση 
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Άρα, χρησιμοποιώντας τη (5) τελικά έχουμε 
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Παρατήρηση 1 Για 
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, το λήμμα του Fejér συνεπάγεται το λήμμα των Riemann-Lebesgue . Πράγματι, αν 
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 είναι ένα διάστημα του 
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Παράδειγμα 1 Να υπολογιστεί το 
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Λύση. Η συνάρτηση 
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 είναι συνεχής, φραγμένη και περιοδική με περίοδο 
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(αντικατάσταση 
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Παράδειγμα 2 Έστω το 
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 είναι Lebesgue μετρήσιμο σύνολο με 
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Απόδειξη. Για τον υπολογισμό του ορίου θα χρησιμοποιήσουμε το λήμμα των Riemann-Lebesgue. Πράγματι, επειδή 
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 από το λήμμα των Riemann-Lebesgue έχουμε 
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Δίνουμε τώρα μια άλλη εφαρμογή του λήμματος Fejér.

Παράδειγμα 3 Έστω οι συναρτήσεις 
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Θα αποδείξουμε ότι 
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Πράγματι, επειδή η 
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 είναι φραγμένης κύμανσης, από το θεώρημα Dirichlet-Jordan (βλέπε [4,page 74]) 
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Επομένως, 
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Επειδή η συνάρτηση 
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 είναι Lebesgue ολοκληρώσιμη, χρησιμοποιώντας το κλασσικό θεώρημα κυριαρχημένης σύγκλισης του Lebesgue μπορούμε να ολοκληρώσουμε κάθε όρο της παραπάνω σειράς χωριστά οπότε 
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Όμως, από το λήμμα του Fejér έχουμε 
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Θεωρούμε τώρα τις σειρές 
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οι οποίες είναι σειρές Fourier συναρτήσεων φραγμένης κύμανσης. Τότε, από την (7) προκύπτει η απόδειξη της (6).
Ισχύει το αντίστροφο του Λήμματος Riemann-Lebesgue; Δηλαδή αν 
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Ως γνωστόν, ο πυρήνας του Dirichlet είναι η ακολουθία 
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οπότε για 
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Δηλαδή, 
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Λήμμα 2  Αν 
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Απόδειξη. Η 
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Επομένως οι όροι της ακολουθίας 
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Άρα, 



[image: image207.wmf]1

=

lim

N

n

D

®¥

¥

. ■
Έστω 
[image: image208.wmf]0

()

c

Z

 είναι ο χώρος των μιγαδικών συναρτήσεων 
[image: image209.wmf]:

j

®

ZC

, με 
[image: image210.wmf](

)

=0

lim

n

n

j

®±¥

. Ορίζουμε 



[image: image211.wmf]{

}

=sup|()|:

nn

jj

¥

Î

Z

PP

.
Ο 
[image: image212.wmf](

)

0

c

Z

 είναι χώρος Banach.

Θεώρημα 3 Η απεικόνιση 
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Απόδειξη. Η 
[image: image221.wmf]L

 είναι γραμμική απεικόνιση. Από το λήμμα Riemann-Lebesgue είναι 
[image: image222.wmf]µ

(

)

lim=0

n

fn

®±¥

 και κατά συνέπεια 
[image: image223.wmf](

)

µ

(

)

0

=

ffc

LÎ

Z

. Από τον ορισμό του συντελεστή Fourier είναι προφανές ότι 
[image: image224.wmf]µ

1

|()|

fnf

£

PP

, οπότε 
[image: image225.wmf]µ

1

ff

¥

£

PPPP

. Δηλαδή 
[image: image226.wmf]1

L£

PP

. Αν 
[image: image227.wmf]()=1

ft

, τότε 


[image: image228.wmf](

)

(

)

µ

(

)

10,

==

00.

n

fnfn

n

an

an

=

ì

L

í

¹

î


Δηλαδή, 
[image: image229.wmf]µ

1

=1=

ff

PPPP

. Επομένως 
[image: image230.wmf]=1

L

PP

. Θα αποδείξουμε ότι η 
[image: image231.wmf]L

 είναι 
[image: image232.wmf]11

-

. Αρκεί να αποδείξουμε ότι 
[image: image233.wmf]µ

()=0

fn

 για κάθε 
[image: image234.wmf]n

Î

Z

 συνεπάγεται ότι 
[image: image235.wmf]=0

f

 σχεδόν παντού. Αυτό όμως ισχύει και μάλιστα είναι άμεση συνέπεια του θεωρήματος Fejér-Lebesgue (βλέπε Θεώρημα 
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Θεωρούμε τον πυρήνα Dirichlet 
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Abstract
We discuss a generalization of Fejér’s Lemma, see [2,4], and we prove Riemann-Lebesgue’s Lemma as a Corollary. We also give some intersting applications and finally we examine the validity of Riemann-Lebesgue’s Lemma opposite.
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