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Abstract

A two-stage vapor compression refrigeration system using R22, R717, R134a and R143a as refrigerants is thermodynamically analyzed in the present work in order to determine the optimal intermediate pressure. Various design parameters that will maximize the coefficient of performance COP and the efficiency of second thermodynamic law ε are considered as given. More specifically, the design conditions are: condenser temperature 25-45oC and evaporator temperature -50-0oC. At the maximum efficiency of the second thermodynamic law corresponds the optimal intermediate pressure which depends on the used refrigerant. The investigation shows that the optimal operation of the cycle is close to the geometric mean of the evaporation and the condensation pressures. In every case the maximum exergy destruction takes place in condenser.
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1. Introduction
In low temperature applications, the required evaporating temperature of the refrigeration system ranges from -40oC to -50oC. The two-stage vapor compression refrigeration systems are widely used when ultra low temperatures are required, but cannot be obtained economically through the use of a single-stage system. This is due to the fact that the compression ratios are too large to attain the temperatures required to evaporate and condense the vapor.
      The last years more and more researchers have been working in energy saving in order to optimize the thermal design of the cooling systems. The First Law of Thermodynamics concerns only the conversion of energy. Therefore, it cannot show how or where irreversibilities occur in a system or process. The concept of exergy is based on the Second Law of Thermodynamics and can be defined as the maximum theoretical work that can be delivered by the interaction of an energy resource with the environment [1]. A theoretical exergy analysis is given by Bejan et al. [2] based on the entropy generation minimization. This method can be used for the thermodynamic optimization of a refrigeration system. 
      Many researchers have investigated the optimum intermediate pressure. Verma and Charam [3] assumed linear variation of the flashed vapor with intermediate pressure and found an expression for the optimum intermediate pressure in terms of a set of differential equations for which a closed-form solution is not possible. Gupta and Prasad [4] studied a three-stage refrigeration system. In this investigation the optimum intermediate temperatures are found on the basis of maximum COP. Zubair et al. [5] investigated both two-stage and mechanical-subcooling refrigeration cycles using R134a. It is shown that the optimum intermediate pressure is very close to the saturation pressure corresponding to the arithmetic mean of the refrigerant condensation and evaporation temperatures. Khan and Zubair [6] studied a two-stage refrigeration system. It is shown that the performance of the cycle depends on the intermediate temperature of the flash intercooler. Agrawal et al. [7] studied a two-stage transcritical carbon dioxide heat pump cycle. It is observed that the optimum intermediate pressure deviate from the classical estimation of the geometric mean of the gas cooler and the evaporator pressure. Arora and Kaushik [8] also studied a two-stage vapor compression refrigeration system. It is shown that the optimal inter-stage saturation temperatures for R22, R717 and R410A are near to the geometric mean of evaporation and condensation temperatures. This work employs thermodynamic energy and exergy analysis to determine the optimal intermediate pressure of the two-stage refrigeration system for various values of the design parameters, such as the condensing pressure (temperature) and evaporating pressure (temperature), for R22, R717, R134a and R143a as refrigerants. Also the exergy loss for every component in the system is estimated. 
2. System description

A refrigeration cycle with two-stages of compression and flash chamber is shown schematically in Fig. 1. Fig. 2 presents the corresponding pressure – enthalpy (p-h) diagram. This system comprises two refrigeration circuits: the high pressure circuit (HPC) and the low pressure circuit (LPC). The two circuits are thermally connected to each other through a flash chamber. The flash chamber plays a central role. Refrigerant exiting the condenser at state (6) expands through a valve and enters the flash chamber at state (7) as a two-phase liquid-vapor mixture with quality. In the flash chamber, the liquid and vapor components separate into two streams. Saturated vapor exiting the flash chamber enters the heat exchanger at state (10), where it mixes with a higher temperature refrigerant leaving the first compression stage at state (2).
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Fig.1. Schematic view of refrigeration cycle with two-stages of compression

and flash chamber
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Fig. 2. Pressure – enthalpy (p-h) diagram of a two-stage vapor compression refrigeration cycle
A single mixed stream exits the heat exchanger at an intermediate pressure at state (3) and is compressed in the second compressor stage to the condenser pressure at state (4). Saturated liquid exiting the flash chamber at state (8) expands through a second valve into the evaporator. The mass rate of low pressure circuit is less than the high pressure circuit. The isentropic efficiency of compressors is a function of the evaporator and condenser pressures. Brunin et al. [9] propose an isentropic efficiency of compressors expressed in terms of the compression ratio, as:
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3. Exergy analysis

The thermodynamic analysis of the two-stage refrigeration system is based on the mass conservation equation; first and second laws of thermodynamics are applied to each component of the system.

      An analysis based on the Second Law of Thermodynamics calculates the system performance based on the exergy, which always decreases because of thermodynamic irreversibility. The exergy loss, thus, provides a very important criterion to evaluate the thermodynamic performance of a system. For an optimal energy system, the exergy loss will be minimum; therefore it is desirable to minimize the exergy loss in order to improve the thermodynamic behaviour of the system. 
      Kotas [1] and Bejan et al. [2] defined the exergy of a fluid stream as:
                                                          e=(h-ho)-To(s-so)                                                             (1)

where e is the exergy of the fluid at temperature T. 

The terms ho and so are the enthalpy and entropy of the fluid respectively at environmental temperature To=293.15 K and pressure Po=1 bar.
      The kinetic and potential energy terms are excluded. The exergy loss rate at steady state, in each component is calculated by:
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      The first term on the right-hand side is the exergy heat rate 
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, which it transferred at constant temperature T. The exergy of heat equals the work obtained by a Carnot cycle operating between T and To and is therefore equal to the maximum reversible work that can be obtained from heat rate 
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. The second term is the exergy of mechanical work rate added or removed to the component (control volume). The last two terms are the sums of exergy inputs and outputs, respectively. Table 1 summarizes the detailed equations for each component. A computer program has been developed in order to calculate the behavior of the cycle for a range of parameters. The thermodynamic properties of refrigerants are determined using the Soave equation of state. 
Table 1. The balance equations for refrigeration cycle with two stages of compression

and flash chamber (TE=Te+5oC and TC=To)
	Componet
	Mass balance
	Energy balance
	Entropy balance
	Exergy balance

	Evaporator
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	LPC compressor
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	Heat exchanger
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	HPC compressor
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	Condenser
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	HPC expansion valve
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	Flash chamber
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	LPC expansion valve
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      The total exergy loss of refrigeration system is the sum of exergy loss in each component and can be written as:

                               
[image: image38.wmf]he

fc

e

c

c2

c1

ev2

ev1

tot

E

E

E

E

E

E

E

E

E

&

&

&

&

&

&

&

&

&

+

+

+

+

+

+

+

=

                                 (3) 

      The coefficient of performance COP, or the first-law efficiency of the cycle is defined as:
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      Dincer defined the second-law efficiency ε of the refrigeration system as:
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where 
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 (TE=Te+5oC and TC=To) the coefficient of performance of Carnot cycle.
4. Results and discussion
A computer program has been developed to calculate the performance of the R22, R717, R134a and R143a refrigeration cycles. Calculations have been performed for a system with 10 kW refrigeration capacity.

      Table 2 contains a comparison between the reduced optimal intermediate saturation temperature which is estimated by Arona and Kaushik [8] and the present study. The comparison showed that the results are close (maximum deviation 4.3%). 
Table 2. Comparison of reduced optimal intermediate saturation temperature for different condenser temperature at Te=-30oC and ηs1=ηs2=80%

	Tc
(oC)
	R22
	R717

	
	(Tm-Te)/(Tc-Te)
	(Tm-Te)/(Tc-Te)

	
	Arora & Kaushik
	Present work
	Arora & Kaushik
	Present work

	30
	0.509
	0.501
	0.475
	0.469

	35
	0.512
	0.500
	0.472
	0.467

	40
	0.515
	0.501
	0.475
	0.464

	45
	0.520
	0.503
	0.479
	0.459


      Fig. 3, 4 display the effect of intermediate pressure Pm on the coefficient of performance COP and second law efficiency ε at the specified design conditions, under which the condenser temperature Tc=40oC and evaporator temperature Te=-30oC for the four refrigerants. It can be seen that there is an optimum intermediate pressure where the COP and ε become maximum. Also the refrigerant R22 performs the higher COP and ε while the refrigerant R134a the lower.
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Fig. 3. The effect of the intermediate pressure Pm on the coefficient of performance COP for condenser temperature Tc=40oC and evaporator temperature Te=-30oC
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Fig. 4. The effect of the intermediate pressure Pm on the second law efficiency ε for condenser temperature Tc=40oC and evaporator temperature Te=-30oC

    The influence of the condenser temperature Tc under different evaporator temperature Te on the optimal intermediate pressure Pm is shown in Fig. 5, 6, 7 and 8, for the refrigerants R22, R717, R134a and R143a, respectively. 
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Fig. 5. The effect of the condenser temperature Tc under different evaporator temperature Te on optimal intermediate pressure Pm for R22
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Fig. 6. The effect of the condenser temperature Tc under different evaporator temperature Te on optimal intermediate pressure Pm for R717
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Fig. 7. The effect of the condenser temperature Tc under different evaporator temperature Te on optimal intermediate pressure Pm for R134a
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Fig. 8. The effect of the condenser temperature Tc under different evaporator temperature Te on optimal intermediate pressure Pm for R143a

     It can be seen that the optimal intermediate pressure Pm increases with increasing condenser temperature Tc and increasing evaporator temperature Te. Also for the same condenser temperature the refrigerant R143a performs the higher optimal intermediate pressure Pm while the refrigerant R134a the lower under different evaporator temperature Te.
     Fig. 9 shows on the one hand the total exergy loss of the system but on the other hand the exergy loss for every component of the system. Also this figure shows that in every case the higher exergy loss of the system takes place in the condenser. The exergy losses in the flash chamber and in the heat exchanger are negligible. 
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Fig. 9. Exergy loss in the components of a two-stage vapor compression refrigeration system for R22, R717, R134a and R143a at optimal intermediate pressure Pm
This information about the exergy loss points leads towards the requirement of design improvement of the condenser, respectively to improve the exergy efficiency of the two-stage vapor compression refrigeration system.

5. Conclusions

The thermodynamic analysis of a two-stage refrigeration cycle using R22, R717, R134a and R143a as refrigerants is carried out by using both the first and second laws of thermodynamics. It is found that the optimum intermediate pressure is near (essentially a little bit greater) of the geometric mean of the condenser and the evaporator pressures. The investigation showed that the maximum efficiency of the second thermodynamic law εmax and the maximum coefficient of performance COPmax varied from 0.372 to 0.412 and 1.308 to 7.634 for R22, from 0.351 to 0.431 and 1.233 to 7.986 for R717, from 0.357 to 0.408 and 1.254 to 7.575 for R134a, from 0.371 to 0.396 and 1.301 to 7.351 for R143a, respectively for condenser temperatures Tc (25-45oC) and evaporator temperatures Te (-50-0oC). At the maximum efficiency of the second thermodynamic law corresponds the optimal intermediate pressure which depends on the used refrigerant. Based on the results presented in this paper, the design of the condenser generally, should be improved to enhance the exergetic efficiency of a two-stage vapor compressor refrigeration system.
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